
INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS
Int. J. Circ. Theor. Appl. (2012)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cta.1874
LETTER TO THE EDITOR

Synthesizing VHDL from Activity Models in UML 2
Tomás Balderas-Contreras*,†, René Cumplido and Gustavo Rodríguez

Computer Science Department, Instituto Nacional de Astrofísica, Óptica y Electrónica, Tonantzintla, Puebla, Mexico
ABSTRACT

This document describes a synthesis technology that generates structural VHDL code from models describing
the flow of data required to perform algorithms operating on bit-blocks. The models are built using restricted
activity diagrams in the UnifiedModeling Language version 2. The code generator is developed using Acceleo,
a technology to implement transformations frommodels to text. The technology described in this paper exploits
the principles of object orientation and model-driven engineering. The primary aim is to improve productivity
and alleviate complexity during the design of digital hardware systems that implement demanding operations
used by a wide variety of computing devices. The use of the technology is illustrated with the generation of
VHDL code from models describing a block cipher algorithm. Copyright © 2012 John Wiley & Sons, Ltd.

Received 19 February 2012; Revised 22 July 2012; Accepted 17 October 2012

KEY WORDS: model-driven engineering; UML 2; domain-specific modeling; meta-modeling; code
generation; VHDL
1. INTRODUCTION

Electrical and electronics engineers have used several technologies, methodologies, and levels of
abstraction to design computer-based systems in the last decades. Implementing advanced architectural
techniques in early computers based on vacuum tubes and solid-state transistors was very difficult.
With the introduction of integrated circuits (IC), the designer developed schematics that described a
computer as a set of interconnected ICs. The increasing complexity of modern systems implemented in
VLSI ICs encouraged the use of hardware-description languages, like Verilog and VHDL, to describe
their functionality. Not only has VHDL been used for describing digital hardware systems, but also to
describe analog and mixed-signal circuits [1].

Current efforts to raise the level of abstraction promote the use of languages commonly employed to
develop software systems, like C and Java, to describe the functionality of digital hardware systems. At
the electronic system level of abstraction, the designer ‘utilizes the appropriate abstractions in order to
increase comprehension about a system and to enhance the probability of a successful implementation
of functionality in a cost-effective manner, while meeting necessary constraint’ [2]. In this context, we
explore the possibility of applying recent advances in software engineering to aid in the design of
digital hardware systems.

Model-driven engineering (MDE) is a recent paradigm intended to raise the level of abstraction further
when developing software systems. This approach conceives the solution to a problem as a set of models
expressed in terms of concepts in the problem’s domain space, those that the designers and/or customers
know very well, instead of concepts in the solution space, those related to software and hardware
*Correspondence to: Tomás Balderas-Contreras, Computer Science Department, Instituto Nacional de Astrofísica,
Óptica y Electrónica, Tonantzintla, Puebla, Mexico.
†E-mail: balderas@ccc.inaoep.mx

Copyright © 2012 John Wiley & Sons, Ltd.



T. BALDERAS-CONTRERAS, R. CUMPLIDO AND G. RODRÍGUEZ
technologies [3]. The intention is to translate the designer’s models into the appropriate implementation
for a specific platform and to hide the complexities of such platform’s hardware and software. The
motivation behind this paradigm is to improve both short-term productivity (increase functionality) and
long-term productivity (lengthen longevity) during the development process [4].

The model-driven architecture (MDA) initiative, proposed by the Object Management Group (OMG),
is a realization of the MDE paradigm [5]. It attempts to define a MDE-based framework using the OMG’s
standards, including the Unified Modeling Language version 2 (UML 2) [6, 7]. The OMG also maintains
standards describing transformations between modeling languages [8] and between modeling languages
and programming languages [9].

This document describes the first steps towards the implementation of a MDA-based design flow to
implement digital hardware systems from domain-specific modeling languages. It is possible to build
UML 2 models that represent certain algorithms and transform them automatically into a functional
description suitable for implementation in a silicon platform (FPGA or ASIC). As an example, we show
how activity diagrams in UML 2 can be adapted to model block cipher algorithms and then processed
by a transformation tool that generates VHDL code from them. The ultimate goal is to contribute to
alleviate the complexity of current systems and increase the productivity of the designers. There are
some other proposals to synthesize VHDL from UML [10, 11]; however, such proposals do not raise
the level of abstraction when building models in UML.

The rest of this document describes our proposal. Section 2 describes how to tailor UML 2 activity
diagrams to model block cipher algorithms. This application domain was selected to illustrate our
technology because block cipher algorithms become more important as computer-based systems require
more strict security mechanisms. Section 3 illustrates the process of generating VHDL code from the
diagrams. Finally, Section 4 concludes.
2. HIGH-LEVEL MODELING OF BLOCK CIPHERS USING UML 2

KASUMI is a block cipher algorithm consisting of a Feistel structure with eight rounds, with each round
invoking other operations that also have a Feistel structure [12]. Figure 1 shows the elements that make up
the algorithm, how the input plaintext block is split into sections, the operations performed on every
Figure 1. The components of the block cipher algorithm KASUMI.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. (2012)
DOI: 10.1002/cta



SYNTHESIZING VHDL FROM ACTIVITY MODELS IN UML 2
section, and the flow of data along every component. Notice that the diagrams in Figure 1 are neither UML
diagrams nor block diagrams of a hardware architecture that implements the algorithm. It is possible to
manipulate the structure of KASUMI to build implementations that consume fewer resources or
achieve higher performance [13, 14]. An activity diagram in UML 2 may be used to represent the flow
of data and the operations required by the components of KASUMI. The structure of these models
could be modified according to the designer’s strategy, and the resulting diagrams could be transformed
to a representation ready to be implemented in a hardware platform.

UML 2 diagrams are commonly used to describe the structure and behavior of object-oriented software
systems. However, not only that, it turns out that UML 2 is a language that has object orientation at its
foundations. Every diagram in UML 2 is a composite object made up of simpler objects linked to each
other. These objects are instances of the classes that populate the meta-model of UML 2 [7], which is
the definition of UML 2 and can be thought of as the model of all of the models built using UML 2.
By studying the meta-model, it is possible to determine how to adapt UML 2 diagrams for accurate
modeling of block ciphers. The activity diagram in UML 2 is the perfect candidate for adaptation
because it allows modeling data flow.

An activity consists of a number of nodes interconnected by edges. There are nodes representing the
execution of operations, input and output parameters to the activity, decisions, constant values,
concurrent flow of control, and other concepts. The edges in an activity represent transfers of data or
control between nodes. Figure 2 shows the classes in the meta-model that define some of the nodes
and edges that are useful to model block cipher algorithms. These classes form a specialization
hierarchy where every class is a specialization of a more abstract concept or class. Describing the
meta-model is beyond the scope of this paper, the interested reader is referred to the references for
detailed information [4,15].

Since an activity diagram may be used to model flows of data in a wide variety of areas, it is necessary
to define a number of constraints and precisions in order for the diagram to model block cipher algorithms
accurately. To adapt the activity diagram to this application domain, we shall restrict the values of the
attributes of the objects that make up the model and establish what kind of nodes can be connected
together. The transformation tool determines if an input model meets such restrictions before
generating the corresponding VHDL code. The following list enumerates some of the restrictions:

1. A well-formed bit-block is an ordered sequence of objects that are instances of the class Bit. The
length of the sequence shall be non-zero and finite.

2. Every activity shall be named.
3. Every activity shall have parameters (instances of the class ActivityParameterNode) that

send/receive a continuous flow of bit-blocks of a fixed length. The length of the bit-blocks
may differ from one parameter node to another.

4. The only edges allowed are those that model flow of data (instances of the class ObjectFlow).
5. Two nodes connected by an edge shall process bit-blocks of the same length.
6. Every operand (an instance of the class Pin) of an operation node (an instance of concrete

sub-classes of the class Action) shall receive a continuous flow of well-formed bit-blocks
coming from other operation nodes through edges.

7. A node shall not be the source or target node of multiple edges.
8. Every operation node shall specify an operation supported by block cipher algorithms (xor, and, or,

shift left, shift right, rotate left, rotate right, split, merge). In case of nodes specifying constants,
these shall be integer values.

9. Every kind of operation node shall have the appropriate number of input and output operands:
a. An operation node indicating a binary bitwise logic operation (xor, and, or, nand, nor, xnor) shall

have two input operands and one output operand. All of the operands shall process bit-blocks of
the same length.

b. An operation node indicating a shift or rotate operation (shift left, shift right, rotate left and rotate
right) shall have one input operand and one output operand processing bit-blocks of the same
length. A second input operand is needed to specify the number of bits to shift/rotate.

c. An operation node indicating a constant value shall have a single output parameter and no
input parameters.
Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. (2012)
DOI: 10.1002/cta



Figure 2. Fragment of the meta-model of UML 2 for activity diagrams.

T. BALDERAS-CONTRERAS, R. CUMPLIDO AND G. RODRÍGUEZ
d. An operation node indicating the split of its single input operand shall have one or more
output operands. The sum of the lengths of the output operands shall equal the length of
the input operand.

e. An operation node indicating the merge of the multiple input operands shall have a single
output operand. The sum of the lengths of the input operands shall equal the length of
the output operand.

10. The restrictions defined for operands shall be met as part of the validation of the owning
operation.

The activity models in Figure 3 observe the previous restrictions; they represent the components of
the algorithm shown in Figure 1 and indicate the operations required to carry out the encryption
process. For simplicity, the algorithm was not manipulated before generating VHDL code, but the
manipulation of models comes in handy when the designer requires evaluating multiple design
Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. (2012)
DOI: 10.1002/cta



Figure 3. Activity diagrams in UML 2 for the KASUMI block cipher.

SYNTHESIZING VHDL FROM ACTIVITY MODELS IN UML 2
strategies to implement a block cipher algorithm. The transformation tool validates that all of the
restrictions are met before generating code. The formal mechanism to extend UML 2, known as
profiling, allows adding restrictions to the semantics of the modeling elements, new notation, and
additional attributes that could be needed.
3. TRANSFORMATION OF MODELS INTO VHDL CODE

The transformation tool is developed using Acceleo [16], a technology built on top of Eclipse that
implements the OMG standard for model to text transformation (M2T) [9]. Our project consists
of a number of modules containing templates that generate the skeleton of the source code.
The templates are filled out with values from attributes of the modeling elements or other
Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. (2012)
DOI: 10.1002/cta



T. BALDERAS-CONTRERAS, R. CUMPLIDO AND G. RODRÍGUEZ
complex values computed by queries. The restrictions stated previously are implemented using queries
written in Acceleo, which are applied to the incoming activity model to validate it before transforming
it into VHDL code.

The query shown in Table I is applied to every action in the model to validate the restriction 6 stated
above; it returns true if the model meets the restriction. The query is written in a declarative language
that is reminiscent of the Object Constraint Language used to specify constraints in the meta-model of
UML 2 [17].

The query checks that every input pin (input parameter) of an action is connected to another node
and receives a continuous supply of well-formed bit-blocks. The value of the query is true when
the operation forAll returns true, which occurs when the condition inside the operation evaluates
to true for every input pin (collection input) of the action on which the query is applied (anAction).
The condition determines whether the current input pin receives bit-blocks of a finite length
(validatePinType() and validatePinMultiplicity()), the number of received bit-blocks is unbounded
(validatePinUpperBound()) and is connected to another node through an edge (isConnected()). The
transformation tool contains about 200 queries that validate the model and retrieve information
from the modeling elements.

In addition to queries, the modules comprising the transformation tool also contain templates that
generate structural VHDL code in the output files. The transformation tool generates one design file in
VHDL for every activity in the model. The body of a template contains fragments of the ultimate code,
invocations to other templates to generate other segments of code, invocations to queries to get
values that are to be included in the code, direct accesses to the attributes of the modeling elements
to get additional values to complete the code, and control structures like loops and conditionals.
The transformation tool contains six modules, each generating a specific section of the VHDL code
describing the design of the component.

The templates generate a sub-set of VHDL that conforms to a reduced version of VHDL’s grammar
[18]. The grammar was simplified because the structural description of block ciphers does not require
all of the language’s constructs. Table II shows a reduced version of the grammar that generates the
entity declaration section in a VHDL file.

The symbols in bold in the previous production rules are terminal and indicate actual code. Terminal
symbols are included in the body of the template to indicate Acceleo the code to generate. The
non-terminal symbols in the rules indicate the application of other rules. Similarly, a template
implementing a production rule may call other templates that generate different parts of the code.
Table I. A query in Acceleo that validates restriction 6.

[query public validateInputPins(anAction: Action): Boolean =
anAction.input
->forAll(i: InputPin |

i.validatePinType() and
i.validatePinMultiplicity() and
i.validatePinUpperBound() and
i.isConnected())

/]

Table II. Simplified grammar that generates the entity declaration section in a VHDL design file.

entity_declaration ::= ENTITY identifier IS
port_clause
BEGIN
END ENTITY identifier;

port_clause ::= PORT (interface_list) ;
interface_list ::= interface_signal_declaration { ; interface_signal_declaration }
interface_signal_declaration ::= identifier_list: mode subtype_indication

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. (2012)
DOI: 10.1002/cta



SYNTHESIZING VHDL FROM ACTIVITY MODELS IN UML 2
Templates employ loops and conditional structures to generate code iteratively or selectively. The
template in Table III generates the entity declaration section in a VHDL file; it maps the parameter
nodes in an activity directly to ports in the entity declaration.

From the activities in Figure 3 the transformation tool synthesizes structural VHDL code
describing a pipelined architecture for KASUMI. Each stage of the architecture corresponds to a
pair of round module and key-scheduler module. The architecture requires eight clock cycles to
encrypt the first 64-bit plaintext block and then issues one ciphertext block every clock cycle.
Figure 4 illustrates simulation results using the standard test vectors provided by the Third
Generation Partnership Program [19]. During the first clock cycle (Figure 4(a)), the architecture is
fed with the first plaintext block and the first key; during the second and third clock cycles
(Figure 4(a) and Figure 4(b)), new data is provided to the architecture. From the eighth clock
cycle to the tenth clock cycle (Figure 4(d) and Figure 4(e)), the architecture generates the resulting
ciphertext blocks. These results prove that the transformation tool generates correct hardware
descriptions in VHDL from activity models; thus, we have a complete design flow from high level
descriptions to lower level representations.

The previous example illustrated the synthesis of VHDL code from a description of KASUMI intended
to optimize the performance of the resulting digital hardware system. Alternatively, the designer may
manipulate the structure of the model of KASUMI to simplify the algorithm and produce area-efficient
systems like those described by the authors previously [13, 14]. Thus, the designer is responsible for
building models according to a strategy for reaching a specific design goal. The structure of these
models shall produce designs optimized for either performance or number of hardware resources.
Power consumption may also benefit from such design strategy, especially when the systems produced
operate on low frequencies.

Our design infrastructure allows modeling complex algorithms and synthesizing the corresponding
VHDL descriptions as long as two conditions are met. First, every model must manipulate bit-blocks
and use supported operations. Second, a model may invoke other models or not; if it does, the
invoked models must meet these two conditions. As a result, our synthesis technology is able to
validate and transform hierarchical models made up an arbitrary number of different models. Also,
UML 2 provides modeling constructs that enable behaviors to invoke one another in a hierarchical
manner; the only limitation may be the extent as to which the modeling tools ease sharing
and reusing modeling projects and diagrams. Therefore, the synthesis tool is applicable to the
development of complex systems.
Table III. Template in Acceleo that generates the entity declaration section in a VHDL design file.

[template public generateEntityDeclaration(anActivity: Activity)]
entity [anActivity.generateEntityName()/] is
[anActivity.generatePortClause()/]

begin
end entity [anActivity.generateEntityName()/];
[/template]
[template public generateEntityName(anActivity: Activity)]
[anActivity.getActivityName().concat(’_entity’)/]

[/template]
[template public generatePortClause(anActivity: Activity)]
port (
[anActivity.generatePortList()/]

);
[/template]
[template public generatePortList(anActivity: Activity)]
[for (pn: ActivityParameterNode | anActivity.getParameterNodes()) separator(’;\n’)]
[pn.getParameterNodeName()/]: [pn.parameter.direction.toString()/][pn.generateSubtypeIndication()/][/for]
[if (anActivity.isSynchronized())]
;
clk: in bit[/if ]
[/template]

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. (2012)
DOI: 10.1002/cta



Figure 4. Waveforms for the pipelined architecture for the KASUMI block cipher.

T. BALDERAS-CONTRERAS, R. CUMPLIDO AND G. RODRÍGUEZ
4. CONCLUSIONS

We described a functional prototype of a synthesis technology that transforms activity diagrams in UML 2
to source code in VHDL. This technology intends to alleviate the complexity of digital hardware design
by raising the level of abstraction and automating the production of VHDL code. It is expected that the use
of this technology also increases the productivity of the designers. A shortcoming of the overall design
environment is that the models cannot be executed to validate its results before synthesis. Execution
would require adding support for execution to the UML 2 modeling infrastructure, which is not a
mature technology at this time. Also, the expressiveness of the prototype is limited at this phase of
its development.

The next version of the technology will include new syntax for the modeling elements to
make them more comprehensible and readable. The use of UML 2 profiles will enrich the
proposed design flow by making the concepts in the application domain recognizable and
comprehensible. A complete transformation tool will also generate code including components
and intellectual property cores for specific ASICs or FPGAs. Thus, it is possible to develop a
family of domain-specific modeling languages for different application domains and a family of
transformation tools, each transforming models in a modeling language to an implementation
for the corresponding platform.
Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. (2012)
DOI: 10.1002/cta



SYNTHESIZING VHDL FROM ACTIVITY MODELS IN UML 2
ACKNOWLEDGEMENTS

This research was funded by CONACyT, the Mexican council for science and technology through the
scholarship number 41722. Thanks to the anonymous reviewers for their valuable comments.

REFERENCES

1. Doménech-Asensi G, Díaz-Madrid JA, Ruiz-Merino R. Synthesis of CMOS Analog Circuit VHDL-AMS
Descriptions Using Parameterizable Macromodels. International Journal of Circuit Theory and Applications;
2011; DOI: 10.1002/cta.820.

2. Bailey B, Martin G, Piziali A. ESL Design and Verification. A Prescription for Electronic System-Level Methodology.
Morgan Kaufmann Publishers: San Francisco, 2007.

3. Kent S. Model Driven Engineering. Lecture Notes in Computer Science 2002; 2335/2002, pp. 286–298.
DOI: 10.1007/3-540-47884-1_16.

4. Atkinson C, Kühne T. Model-Driven Development: A Metamodeling Foundation. IEEE Software 2003; 20(5):36–41.
DOI: 10.1109/MS.2003.1231149.

5. Miller J, Mukerji J. Model Driven Architecture. Object Management Group, 2001; ormsc/2001-07-01.
6. OMGSpecification. OMGUnifiedModeling Language (OMGUML) Infrastructure. Version 2.1.2.Object Management

Group, 2007; formal/2007-11-04.
7. OMGSpecification. OMGUnifiedModeling Language (OMGUML) Superstructure. Version 2.1.2.Object Management

Group, 2007; formal/2007-11-02.
8. OMG Specification. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification. Version 1.1. Object

Management Group, 2011; formal/2011-01-01.
9. OMG Specification. MOF Model to Text Transformation Language. Version 1.0. Object Management Group 2008;

formal/2008-01-16.
10. Björklund D, Lilius J. From UML Behavioral Descriptions to Efficient Synthesizable VHDL. In Proceedings of the

20th IEEE Norchip Conference, 2002.
11. Coyle FP, Thornton MA. From UML to HDL: A Model Driven Architectural Approach to Hardware/Software

Co-design. In Proceedings of Information Systems: New Generations Conference, 2005.
12. 3GPP Specification. Universal Mobile Telecommunications System (UMTS), Specification of the 3GPP Confidentiality

and Integrity Algorithms, Document 2: KASUMI Specification. Version 5.0.0. 3rd Generation Partnership Program,
2002; 3GPP TS 35.202.

13. Balderas-Contreras T, Cumplido R. An Efficient Reuse-based Approach to Implement the 3GPP KASUMI Block Cipher.
In Proceedings of the First International Conference on Electrical and Electronics Engineering 2004.

14. Balderas-Contreras T, Cumplido R. High Performance Encryption Cores for 3G Networks. In Proceedings of the
42nd Design Automation Conference, 2005.

15. Olivé A. Conceptual Modeling of Information Systems. Springer Publishing Company, Incorporated:
New York, 2007.

16. Musset J, Juliot E, Lacrampe S. Acceleo User Guide. Obeo, 2010.
17. OMG Specification. Object Constraint Language. Version 2.0. Object Management Group, 2006; formal/06-05-01.
18. IEEE Standard. VHDL Language Reference Manual. The Institute of Electrical and Electronics Engineers, Inc.

2002; IEEE Std 1076–2002.
19. 3GPP Specification. Universal Mobile Telecommunications System (UMTS), Specification of the 3GPP Confidentiality

and Integrity Algorithms, Document 3: Implementors’ Test Data. Version 5.0.0. 3rd Generation Partnership Program,
2002; 3GPP TS 35.203.
Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. (2012)
DOI: 10.1002/cta


